
SPIFFE AS A COMMON GLUE FOR LARGE SCALE TELCO DEPLOYMENTS: A NEPHIO RATIONALE AN LF NETWORKING PUBLICATION 1

SPIFFE as a common
glue for Large Scale
Telco Deployments:
A Nephio Rationale
Rahul Jadhav (AccuKnox), Nephio SIG-Security Chair

Prashant Mishra (AccuKnox)

A Linux Foundation Networking publication

SPIFFE AS A COMMON GLUE FOR LARGE SCALE TELCO DEPLOYMENTS: A NEPHIO RATIONALE AN LF NETWORKING PUBLICATION 2

Contents

Introduction ..3

1. Terminology ...4

2. Telco Deployments ...5

3. Workload Identity vs User Identity ...7

4. Why Nephio needs an Identity layer? ..9

5. Why SPIFFE? ...14

6. High level SPIFFE Reference Design for Nephio ..16

7. Deciding the SPIFFE ID format ...21

8. Next steps… ...21

9. SPIRE Limitations ..21

10. Current state of SPIFFE integration in Nephio ..22

11. References ...22

12. Credits ..23

SPIFFE AS A COMMON GLUE FOR LARGE SCALE TELCO DEPLOYMENTS: A NEPHIO RATIONALE AN LF NETWORKING PUBLICATION 3

Introduction
The majority traffic in any deployment is east-west traffic, i.e., inter-service traffic where appli-
cations talk to each other. Applications/Microservices typically have a fixed pattern of com-
munication, for e.g., a web server will talk to a database server, a log server and take ingress
traffic from a frontend server. In case of ORAN deployments, xApps can connect to Subscription
Manager to listen to E2 nodes events. These fixed patterns of communications usually translate
to a set of access control rules and setting up these access control/authorization rules requires
one to “securely and uniquely identify” these applications aka workloads aka services (will
be using these terms interchangeably). The Principles of Least Privilege (PoLP) which is the
cornerstone for Zero Trust Security states that every workload must be able to access only the
information and resources that are necessary for its legitimate operations.

Thus the workloads need to be identified at a granular level using a “unique and entire” set
of attestable attributes so that the authorization frameworks have the flexibility to put in the
access control rules as desired.

Nephio Security Background
Nephio SIG-Security was chartered in Oct 2023. The immediate action item as part of R3
release was to handle OpenSSF score improvement. But apart from that, the charter identified
other security action items such as Holistic Secrets Management, Service Mesh, Network
Security etc. Very soon it was realized that most of these advanced security action items cannot
be handled without having a strong Identity layer especially given the distributed nature of
Nephio’s operation. Thus the SIG-Security decided to take up the task of ensuring the right
identity architecture and propose the design/architecture changes to the Nephio SIGs at large.

https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://lf-nephio.atlassian.net/wiki/spaces/HOME/pages/7077914/SIG+Security

SPIFFE AS A COMMON GLUE FOR LARGE SCALE TELCO DEPLOYMENTS: A NEPHIO RATIONALE AN LF NETWORKING PUBLICATION 4

1. Terminology

Term Details

SIG Special Interest Group

SPIFFE Secure Production Identity Framework For Everyone

SPIRE SPIFFE Reference Implementation

ORAN Open RAN

PoLP Principles of Least Privilege

ZTA Zero Trust Architecture

RAN Radio Access Network

VAS Value Added Services

FOCOM Federated Open Cloud Orchestration & Management

IMS Infrastructure Management System

IDP IDentity Provider

SVID SPIFFE Verifiable Identity Document

porch Package Orchestration

SPIFFE AS A COMMON GLUE FOR LARGE SCALE TELCO DEPLOYMENTS: A NEPHIO RATIONALE AN LF NETWORKING PUBLICATION 5

2. Telco Deployments
Telco Deployments have evolved from:

• SS7, that were only focussed on telephony services.

• SS7 over IP (aka SIGTRAN), that enabled native integration with IP networks and
removed need for non-IP switches/routers.

• NGIN, that enabled VAS (Value Added Services) integrations with core telephony.

• Cloud Native Deployments. Disaggregation and democratization using cloud native
deployments will help telcos adopt services beyond traditional telephony (voice and data).

One of the primary concern would be ensuring scalable authorization of services
interconnect in such as dynamic, multi vendor, multi cloud deployments.

A strong Identity layer becomes a foundational concern for any Service-Centric Telco
operator. If the services have to scale they need to trust each other is a secure way. If the
trust is breached or compromised, then the Identity architecture decides the blast radius
of the compromise.

ORAN context
ORAN or (Open RAN) is a software-based transformation of RAN that allows operators to open
the RAN interfaces and enables services to leverage the telemetry data in a highly scalable
way. ORAN standardizes the interfaces such that the services can now be delivered in a vendor
agnostic way. Any vendor can leverage the open interfaces and propose a service that improves
telco operator’s capability to provide advanced, improved services.

SPIFFE AS A COMMON GLUE FOR LARGE SCALE TELCO DEPLOYMENTS: A NEPHIO RATIONALE AN LF NETWORKING PUBLICATION 6

The Identity layer is at the core of this innovation since a secure and scalable Identity layer can
enable secure onboarding and usage of such services.

ORAN disaggregates the RAN components and standardizes the interfaces between these
components. The Identity of the components is the key to securely establishing the authori-
zation between the components based on the shown connectivity graph. The components
can be further broken down; for instance in near-RT RIC, there are subcomponents such as
E2Term, E2Mgr, and xApps. These components essentially control the RAN and UE elements/
groups and thus the authorization plays a central role in ensuring that unknown/unwanted
components do not have access to such interfaces. Identity is a pre-requisite for any such
secure authorization to happen.

SPIFFE AS A COMMON GLUE FOR LARGE SCALE TELCO DEPLOYMENTS: A NEPHIO RATIONALE AN LF NETWORKING PUBLICATION 6

SPIFFE AS A COMMON GLUE FOR LARGE SCALE TELCO DEPLOYMENTS: A NEPHIO RATIONALE AN LF NETWORKING PUBLICATION 7

3. Workload Identity vs User Identity
User Identity deals with identifying a user in a system and there is a human/person behind
the Identity who can attest to the system by providing a secure key/password or any other
bio print.

In case of workloads, a secure attestation becomes a challenge since this attestation should
uniquely identify that workload alone without any manual intervention. The requirement for
such attestations is that any other workload should not be able to spoof this attestation, even
within the same operational domain.

Token based Access
Traditionally, there are two ways to provision an access to a service.

1. Using Identity, wherein a workload or user accesses the service by authentication of its
Identity. The service enables authorization flow by enabling access to the service based
on Identity.

2. Using Tokens, wherein a workload or a user is in possession of a token that is issued
by the service that allows anyone with that token to access the service. Note that the
Identity is not considered in such cases i.e., merely the possession of the token enables
access to the service. Consider the case of GitHub Access Token which allows anyone
holding that token to access the corresponding Github services.

SPIFFE AS A COMMON GLUE FOR LARGE SCALE TELCO DEPLOYMENTS: A NEPHIO RATIONALE AN LF NETWORKING PUBLICATION 7

SPIFFE AS A COMMON GLUE FOR LARGE SCALE TELCO DEPLOYMENTS: A NEPHIO RATIONALE AN LF NETWORKING PUBLICATION 8

Token based Access has following caveats:

1. Manual rotation of the token. For e.g., in case of Github, one can issue a token that is valid
for a certain duration beyond which the token has to be rotated. The token might be used
in more than one places and the user has to ensure that all these token are updated.

2. A token is associated with a fixed set of permissions. If there are any changes to the per-
missions spec, the token has to be updated to allow the updated permissions.

Consider the case where a token grants READ access to a FileService. The are two applications,
App1 and App2 who needs this READ access and the user creates a single Token that enabled
READ access to the FileService and then shares the token to App1 and App2. Any application
in possession of the Token can now READ from the FileService. The FileService developer then
gets a requirement to split the READ access into two parts READ-Metadata, READ-ALL enabling
read of metadata-only, and metadata+content respectively of the files. Now lets assume that
App1 needs READ-Metadata access only and App2 needs READ-ALL access. The issued tokens
have to be updated to ensure appropriate access. Note that Token update usually is a more
tedious process since all the impacted Applications have to be checked and updated.

With Identity based solution, this becomes an authorization problem, wherein the user/applica-
tion identifies itself and then accesses the service. Thus any change in the permission spec can
be dynamically applied. In this case, after the READ access is split between READ-Metadata and
READ-ALL, the deployment changes the authz rule stating App1 needs READ-Metadata access
and App2 needs READ-ALL. There are no changes required on the Applications since their
Identity remains the same.

SPIFFE AS A COMMON GLUE FOR LARGE SCALE TELCO DEPLOYMENTS: A NEPHIO RATIONALE AN LF NETWORKING PUBLICATION 8

SPIFFE AS A COMMON GLUE FOR LARGE SCALE TELCO DEPLOYMENTS: A NEPHIO RATIONALE AN LF NETWORKING PUBLICATION 9

4. Why Nephio needs an Identity layer?
Nephio’s mission is to deliver carrier-grade, open, Kubernetes based cloud native intent
automation that simplifies the deployment and management of multi-vendor cloud infra-
structure and network functions across large scale edge deployments.

Workloads operating at such scales need to communicate to each other and secure autho-
rization needs to be in place to handle this communication. Identity is a pre-requisite for
any authorization solution to scale. Lets look at some of the examples today, why Nephio
needs Identity.

The problem Nephio wants to solve start only
once we try to operate at scale. “Scale” here does
not simply mean “large number of sites”. It can
be across many different dimensions: number
of sites, number of services/workloads, size of
the individual workloads, number of machine
needed to operate the workloads, complexity of
the org running the workloads, and other factors.
The fact that our infrastructure, workloads, and
workload configurations are all interconnected
dramatically increases the difficulty in managing
these architectures at scale.

SPIFFE AS A COMMON GLUE FOR LARGE SCALE TELCO DEPLOYMENTS: A NEPHIO RATIONALE AN LF NETWORKING PUBLICATION 10

Sharing resources between Management
and Regional/Edge clusters
Nephio Management cluster is dedicated to manage the deployment and lifecycle of
network functions that will be deployed on workload clusters. Workload cluster is where
the actual network function workloads are deployed and running.

Requirement REQ_MGMT_CLUSTER_COMM: Nephio Management Cluster currently

connects to the Regional/Edge cluster by creating a key as part of Cluster API operations.
The use of this key allows any operations to be done at regional/edge cluster. Nephio
Management cluster in the future might require someway to create authorization policies
such that only limited set of operations could be done through certain workloads from the
management cluster.

Requirement REQ_WORKLOAD_CLUSTER_COMM: Currently, Nephio regional/edge clusters
do not communicate back to the Nephio Management cluster. However, there would be
requirements to communicate back in the near future. In this case, it should be possible to
authorize appropriate access for services on regional/edge clusters to Nephio management
cluster resources.

SPIFFE AS A COMMON GLUE FOR LARGE SCALE TELCO DEPLOYMENTS: A NEPHIO RATIONALE AN LF NETWORKING PUBLICATION 11

Secrets Management
Currently, if the management cluster has to provide any secrets access to the edge/
regional cluster it has to create the secrets are created in the individual clusters. This
has multiple issues:

• The secrets have to by synced across multiple clusters and the time duration to do this
can be high.

• Causes secrets sprawl i.e., multiple clusters may end up having the same secret and
thus the possibility of compromise increases manyfold.

• Using k8s secrets may not be the best way for any sensitive secrets. Use of secrets
managers is common, and the secrets manager can be issued with access policies for
which the identity is a pre-requisite.

Requirement REQ_SECRETS_MGMT: Edge/Regional cluster workloads should be able
to request access to certains keys from the management cluster. It should be possible to
set the access control to read/write based on the workload type.

SPIFFE AS A COMMON GLUE FOR LARGE SCALE TELCO DEPLOYMENTS: A NEPHIO RATIONALE AN LF NETWORKING PUBLICATION 12

Observability/Monitoring for Nephio subsystems
Nephio intends to use workload/cluster observability/monitoring solutions. This requires that
the observability data be pushed to a common storage most likely on the management cluster.
It is necessary to enable authorization of which edge/regional workloads should be allowed to
push the observability data and at what points in the management cluster.

Requirement REQ_OBS_MON: Edge/Regional cluster should be able to call APIs on the manage-
ment cluster that should allow only appropriate clusters to send observability data at the given
API endpoints.

ORAN FOCOM <> IMS Interaction
The primary role of the FOCOM and IMS services is to provide for the lifecycle management of
the resources exposed by an O-Cloud.

The role of the FOCOM function is to provide federated orchestration and management across
multiple O-Clouds using the O2ims interface.

Requirements REQ_FOCOM_IMS_AUTHZ: FOCOM essentially operates as a client for IMS
requesting IMS services to orchestrate the infrastructure. The IMS service could be provided by
different providers and the FOCOM workload needs to identify itself for the IMS to grant access
to the infrastructure operations.

Note that there are many other use-cases within the scope of ORAN based deployments but the
FOCOM <> IMS interaction is the primary use-case of interest currently. Any Identity solution
though should equally apply well to other cases.

SPIFFE AS A COMMON GLUE FOR LARGE SCALE TELCO DEPLOYMENTS: A NEPHIO RATIONALE AN LF NETWORKING PUBLICATION 13

Inter-NF (Network Functions) comm across multiple clusters
Requirement REQ_INTER_WORKLOAD_COMM: The identity layer should also enable authz for
communication between workloads. For example, only UPF and SMF should be allowed to be
connected on the N4 interface.

Enabling Zero Trust Deployment
Requirement REQ_ZERO_TRUST: A deployment should consists of authorization rules that
denies all and allows only specific communications between the set of endpoints.

Why isn’t Kubernetes Native Identity good enough?
For one simple reason; k8s identity is bound to a specific cluster. The namespace, service
account, selector labels, scope is tied to the k8s cluster the workload belongs to. There needs
to be an abstraction layer on top of these k8s constructs that expands the scope across the
deployments constituting multiple clusters.

Further there is a need for Identity Federation i.e., Nephio entities will interact with third party
providers to fulfill some of its tasks and thus would need Identity Federation. Kubernetes native
Identity does not provide a common substrate to operate across heterogenous deployments.

SPIFFE AS A COMMON GLUE FOR LARGE SCALE TELCO DEPLOYMENTS: A NEPHIO RATIONALE AN LF NETWORKING PUBLICATION 13

SPIFFE AS A COMMON GLUE FOR LARGE SCALE TELCO DEPLOYMENTS: A NEPHIO RATIONALE AN LF NETWORKING PUBLICATION 14

5. Why SPIFFE?
SPIFFE and SPIRE (reference implementation for SPIFFE) provides a uniform identity control
plane across modern and heterogeneous infrastructure. In the case of Nephio, SPIFFE standard
can help glue multiple workloads spread across multiple Nephio instantiated clusters and
provide a consistent Identity standard. SPIFFE provides Identity federation across other IDPs
thus able to operate in heterogenous environments. SPIRE is a CNCF graduated project that
provides a reference implementation for SPIFFE. Most importantly, the SPIRE provides a bunch
of attestation plugins supported right out of the box that could be leveraged for Kubernetes,
and bare-metal environments.

The most important differentiation provided by SPIRE is the attestation process by which it
identifies the workload, before issuing it an identity document. This significantly improves
security and reduces management complexity since no long-lived static tokens/credentials
needs to be co-deployed with the workload itself.

SPIFFE 101
SPIFFE is a set of open-source specs for a framework capable of bootstrapping and issuing
identity to services across heterogeneous environments and organizational boundaries. A short
lived cryptographic identity document - called SVID (SPIFFE Verifiable Identity Document) plays a
central role in these spec. [TODO add SVID to terms].

SVID: An SVID is a document with which a workload proves its identity to a resource. An SVID
contains a single SPIFFE ID representing the identity of the service and the SVID is encoded in a
cryptographically verifiable document; either as a X.509 certificate or a JWT token.

SPIFFE ID: A SPIFFE ID is a URI string of the format spiffe://trust-domain/workload-identifierspiffe://trust-domain/workload-identifier that
uniquely and specifically identifies a workload within a trust-domain.

https://github.com/spiffe/spire
https://github.com/spiffe/spiffe/blob/main/standards/SPIFFE.md

SPIFFE AS A COMMON GLUE FOR LARGE SCALE TELCO DEPLOYMENTS: A NEPHIO RATIONALE AN LF NETWORKING PUBLICATION 15

SPIFFE OPERATION PHASES

1. Workload Registration: Workloads that will be using SPIFFE need to be registered with
the SPIFFE/SPIRE server. The registration informs the server about the mapping between
Identity (SPIFFE ID) and the corresponding set of attestation attributes. Server will use
these attestation attributes to ascertain the claimed identity.

2. Service Attestation: When the service starts, it needs to attest itself to the SPIRE server
proving its identity.

3. Identity Provisioning: Once the attestation is successfull, the SPIRE server will issue the
identity document (SVID) to the service. This SVID is either a x.509 certificate or a JWT that
can subsequently be made use of in the data plane for authentication. The SPIFFE ID that is
part of the SVID can be used for authorization purposes.

4. Data Plane Communication: Data plane communication over transport protocols or tun-
nels require a credential or a token that can be used for security/authentication purpose.
For e.g., in case of mTLS, both the client and server need to present their x.509 certificate
for authentication purpose. In case of IP tunnels, x.509 certs will be needed to authen-
ticate before establishing the tunnels. The SVID issued as part of identity provisioning
procedure is put to use in all such cases.

SPIFFE AS A COMMON GLUE FOR LARGE SCALE TELCO DEPLOYMENTS: A NEPHIO RATIONALE AN LF NETWORKING PUBLICATION 16

6. High level SPIFFE
 Reference Design for Nephio

SPIRE Control Plane Deployment
SPIRE Control Plane component has two aspects:

1. SPIRE Server

2. SPIRE Agents

In the case of Nephio, SPIRE server will be deployed on the Nephio Management Cluster
and the SPIRE Agents would be deployed on all the clusters including management and
workload clusters. SPIRE Agents are needed on all the clusters that has workloads that
needs to attest to the SPIRE control plane server.

SPIFFE AS A COMMON GLUE FOR LARGE SCALE TELCO DEPLOYMENTS: A NEPHIO RATIONALE AN LF NETWORKING PUBLICATION 17

Lifecycle of SPIFFE Workload Identity in context to Nephio
Nephio uses porch (Package Orchestration) toolkit that allows overall lifecycle of packages.
These packages could be thought of as a Blueprint that encompasses both the workload
definition itself and all the associated state such as Identity, Authz rules, etc.

The flow shown in the above diagram explains how Nephio manages the lifecycle of the work-
load blueprint and how the Identity related aspects could be plugged in.

1. DEV SPECIFIES THE WORKLOAD BLUEPRINT

Typically, the developer specifies the workload blueprint that includes

1. the workload related packages

2. the workload deployment related aspects

3. For workload identity, the blueprint will also additionally contain the identity and corre-
sponding authz rules

 º Identity contains the SPIFFE ID that should be allocated to the workload provided it can
attest to the given attributes. The attributes are extensible, but to begin with Nephio will
use, Workload Namespace, Workload Selector Labels, and Workload Service Account as
the attributes for attestation.

 º (Future) Authz rules will include all the authorization policies that this workload needs to
use to access different resources.

2. WORKLOAD BLUEPRINT AUTOMATION USING
OF PORCH AND ASSOCIATED TOOLING

Porch/kpt/configsync are three tools that are heavily used for automation by Nephio.

• kpt automates Kubernetes configuration editing.

• porch provides a control plane for creating, modifying, updating, and deleting packages,
and evaluating functions on package data. This enables operations on packaged resources
similar to operations directly on the live state through the Kubernetes API.

• configsync synchronizes the generated resources on the target k8s clusters. Config Sync is
built on top of git-sync and is used to automatically render manifests on the fly.

The workload blueprints are essentially packages that are managed by porch. Porch evaluates
the blueprints and emits the final state in the repositories. ConfigSync picks up these updates
from the repos and then synchronizes in the target k8s deployments.

SPIFFE AS A COMMON GLUE FOR LARGE SCALE TELCO DEPLOYMENTS: A NEPHIO RATIONALE AN LF NETWORKING PUBLICATION 18

3. USE OF PORCH SPECIALIZORS & MUTATORS

Porch enables use of workflows similar to those supported by kpt cli, but makes them available
as a service.

Workflows enables Porch to use “specializors” and “mutators” that can enable in place updates
of the resources customizing it for deployment specific needs.

In case of Identity resources, the specializors/mutators will adapt the k8s resources based on
the given deployment. For e.g., when the Nephio decides to deploy the given workload in a
specific namespace using a specific service account, the mutators would be used to replace the
appropriate Identity parameters with the relevant details.

https://kpt.dev/book/02-concepts/02-workflows

SPIFFE AS A COMMON GLUE FOR LARGE SCALE TELCO DEPLOYMENTS: A NEPHIO RATIONALE AN LF NETWORKING PUBLICATION 19

4. SYNCHRONIZING THE RESOURCES IN THE TARGET K8S CLUSTERS

The process of porch mutation leads to workload identity resources to be pushed to the
management repo, which are then picked up by the corresponding configsync in the Nephio
Management Cluster.

The workload identity resources provide identity registration details to the SPIRE server.

5 & 6. REGISTRATION OF WORKLOAD IDENTITY WITH SPIRE SERVER

In the context of SPIFFE, the Workload Identity needs to be registered with the SPIRE server. The
registration process tells the server what attestation to expect given the Identity. The configsync
creates appropriate Identity resources in the k8s cluster which are then watched/picked up by
the SPIRE server for registering the workloads.

SPIFFE AS A COMMON GLUE FOR LARGE SCALE TELCO DEPLOYMENTS: A NEPHIO RATIONALE AN LF NETWORKING PUBLICATION 20

7 & 8. WORKLOAD ATTESTATION

Once the workloads are deployed in the target k8s workload clusters, then the SPIRE agent
will initiate a attestation procedure. Note that the SPIRE agent is deployed as a daemonset
and it needs (read) access to all the workload resources using a ClusterRole.

The SPIRE Agent initiates a attestation procedure based on its configuration. In this case,
we intend to use the k8s built-in plugin that enables attestation based on namespace and
service account.

9 & 10. IDENTITY PROVISIONING

Using the attestation procedure, the SPIRE agent submits claims (namespace and ser-
vice-account) on behalf of the workload to the SPIRE server. The SPIRE server independently
investigates these claims using k8s control plane and if the claims are entirely validated, a
Identity is provisioned.

The result of an Identity provisioning typically is the provisioning of a cryptographically
secured token or credential. In this case, we assume that Nephio will use x.509 certs as the
Identity token aka SVID. The x.509 certificate’s SAN (Subject Alternative Name) field contains
the Identity of the workload. Note that it is possible to provision multiple Identity documents
to the same workload.

https://spiffe.io/docs/latest/deploying/spire_agent/#built-in-plugins

SPIFFE AS A COMMON GLUE FOR LARGE SCALE TELCO DEPLOYMENTS: A NEPHIO RATIONALE AN LF NETWORKING PUBLICATION 21

7. Deciding the SPIFFE ID format
SPIFFE IDs are a Uniform Resource Identifier (URI) which takes the following format:
spiffe://trust domain/workload-identifier. The workload identifier uniquely identifies
a specific workload within a trust domain.

The end result of SPIFFE control plane operation is the provisioning of the Identity (ID)
that uniquely identifies the workload. The SPIFFE ID is then eventually used for autho-
rization purpose. For e.g., when the mTLS connection is established, the SPIFFE ID is
validated at both ends.

Thus it is imperative that the SPIFFE ID is decided keeping in view the long term authori-
zation needs.

8. Next steps…
• Handling Identity Federation.

• ORAN FOCOM <> IMS Interaction. FOCOM is a client to IMS services.

• Is there any change required in the existing apps to use SPIFFE?

• Should Nephio use x.509 or JWT as SVIDs?

• TODO: Explain Certificate Revocation strategy.

9. SPIRE Limitations
SPIRE is a reference implementation and has some limitations that one needs to be
familiar with:

• SPIRE Agent is deployed as daemonset and thus won’t work on k8s architecture not
allowing to deploy daemonset (such as AWS Fargate, GKE AutoPilot).

 º Nephio Management and Workload clusters are completely managed by Nephio
and we can assume Daemonsets to work.

• SPIRE helps you to provision Identity after attestation … However, the authz proce-
dures needs to be updated to use this Identity and requires additional work depend-
ing on where the authz is done.

• It is possible to handle federation with other providers, but each of it requires an
integration of its own. (This cannot be called SPIRE limitation but one has to remem-
ber that SPIRE needs to work with ecosystem to handle Identity at scale).

SPIFFE AS A COMMON GLUE FOR LARGE SCALE TELCO DEPLOYMENTS: A NEPHIO RATIONALE AN LF NETWORKING PUBLICATION 22

10. Current state of SPIFFE integration in Nephio
Nephio SIG-Security has been focussing on getting the requirements, user-scenarios for
Workload Identity. The efforts have led to multiple demos that were shown to the community.

• 14th May 2024: Initial Demo of Nephio-SPIRE Integration

• 23rd July 2024: Second Demo of Nephio-SPIRE Integration

• 13th Aug 2024: Integrated demo with Automated workload registration

• 20th Aug 2024: Discussion on Nephio Hydration strategies for SPIFFE Identity

11. References
• Nephio Documentation

• SPIFFE Website

• SPIFFE Specification

• Solving the Bottom Turtle: SPIFFE eBook

• How to construct SPIFFE IDs?

• SPIFFE/SPIRE on Redhat OpenShift

• Kubernetes Workload Identity

• What are vRAN and Open RAN?

https://lf-nephio.atlassian.net/wiki/spaces/HOME/pages/7078374/2024-05-14+Meeting+notes+Nephio-SPIRE+demo
https://lf-nephio.atlassian.net/wiki/spaces/HOME/pages/7078397/2024-07-23+Meeting+notes+SPIFFE+demo+2
https://lf-nephio.atlassian.net/wiki/spaces/HOME/pages/7078405/2024-08-13+Meeting+notes+SPIRE+Demo+3+Auto+Workload+Reg
https://lf-nephio.atlassian.net/wiki/spaces/HOME/pages/11829408/2024-08-20+Meeting+notes+Hydration+and+its+impact
https://docs.nephio.org/docs/
https://spiffe.io/
https://github.com/spiffe/spiffe/blob/main/standards/SPIFFE.md
https://spiffe.io/book/
https://www.spirl.com/blog/how-to-construct-spiffe-ids/
https://next.redhat.com/2024/06/27/spiffe-spire-on-red-hat-openshift/
https://medium.com/@nyrahul/kubernetes-workload-identity-3d638ef12782
https://www.analysysmason.com/research/content/articles/what-is-vran-rma18-rdns0/

12. Credits
Nephio SIG-Security (especially Shiv Bhagavatul, Wim Hendrickx,
and Byung-Woo Jun for their continuous feedback/review)

Nephio SIG-Automation and SIG-NetArch members for providing
their mind share.

This research was supported in part by NSF awards CNS-
2112471, ITE-2226443 and ITE-2326882. Any opinions, findings,
conclusions, or recommendations expressed are those of the
authors and not necessarily of the NSF.

	Introduction
	1. Terminology
	2. Telco Deployments
	3. Workload Identity vs User Identity
	4. Why Nephio needs an Identity layer?
	5. Why SPIFFE?
	6. High level SPIFFE Reference Design for Nephio
	7. Deciding the SPIFFE ID format
	8. Next steps…
	9. SPIRE Limitations
	10. Current state of SPIFFE integration in Nephio
	11. References
	12. Credits

